## Goldbach's Conjecture implementation in pl sql help request

Hi,
I have this javascript code of Goldbach's Conjecture method, can someone help with its implementation in oracle plsql.
javascript code
<script>
// Javascript program to implement Goldbach's
// conjecture
let MAX = 10000;

// Array to store all prime less than
// and equal to 10^6
let primes = new Array();

// Utility function for Sieve of Sundaram
function sieveSundaram()
{
// In general Sieve of Sundaram, produces
// primes smaller than (2*x + 2) for a
// number given number x. Since we want
// primes smaller than MAX, we reduce
// MAX to half. This array is used to
// separate numbers of the form i + j + 2*i*j
// from others where 1 <= i <= j
let marked = new Array(parseInt(MAX / 2) + 100).fill(false);

// Main logic of Sundaram. Mark all
// numbers which do not generate prime
// number by doing 2*i+1
for (let i = 1; i <= (Math.sqrt(MAX) - 1) / 2; i++)
for (let j = (i * (i + 1)) << 1;
j <= MAX / 2; j = j + 2 * i + 1)
marked[j] = true;

// Since 2 is a prime number
primes.push(2);

// Print other primes. Remaining primes
// are of the form 2*i + 1 such that
// marked[i] is false.
for (let i = 1; i <= MAX / 2; i++)
if (marked[i] == false)
primes.push(2 * i + 1);
}

// Function to perform Goldbach's conjecture
function findPrimes(n)
{
// Return if number is not even
// or less than 3
if (n <= 2 || n % 2 != 0)
{
document.write("Invalid Input <br>");
return;
}

// Check only upto half of number
for (let i = 0; primes[i] <= n / 2; i++)
{
// find difference by subtracting
// current prime from n
let diff = n - primes[i];

// Search if the difference is also a
// prime number
if (primes.includes(diff))
{
// Express as a sum of primes
document.write(primes[i] + " + " + diff + " = " + n + "<br>");
return;
}
}
}

// Driver code

// Finding all prime numbers before limit
sieveSundaram();

// Express number as a sum of two primes
findPrimes(4);
findPrimes(38);
findPrimes(100);

// This code is contributed by gfgking
</script>
Output:

2 + 2 = 4
7 + 31 = 38
3 + 97 = 100